
A Replacement
Policy Based on
Dynamic Profiling
and Hashed
Information
Marios Kleanthous∗,1,4, Sami Yehia†,2,
Yiannakis Sazeides∗,1, Emre Ozer‡,3

∗ University of Cyprus, 75 Kallipoleos Street, CY-1678 Nicosia, Cyprus
† THALES Research & Technology, RD 128 - 91767 Palaiseau cedex, France
‡ ARM Ltd, 110 Fulbourn Road, Cambridge CB1 9NJ, United Kingdom

ABSTRACT

KEYWORDS: replacement policy, dynamic profiling

1 Introduction

Current superscalar general purpose processors invest in all kinds of ways to predict data
in order to exploit ILP. For example, value predictors and branch predictors keep the his-
tory of previous instructions in order to correctly predict the data or outcome of upcoming
instructions. Unfortunately, these structures are very large and complex most of the time.

Although these structures are big, only a subset of the entries in these structures is effec-
tively useful because of non-regular data or very rarely used entries. We also observed that
it is difficult to reduce the number of entries of these structures without degrading its pre-
diction accuracy because smaller structures will cause useful entries to be evicted by other
non useful one.

Embedded processors are unable to afford big and power hungry predictor structures.
A cost efficient method is needed to select the best subset of instructions that will update
a small predictor without the use of such big data structures. In other words, a new re-

1E-mail: {mklean,yanos}@cs.ucy.ac.cy
2E-mail: {sami.yehia}@thalesgroup.com
3E-mail: {emre.ozer}@arm.com
4This author wishes to thank HiPEAC and ARM for offering him the oportunity of an industrial Intership that
resulted to this work.



placement policy must be considered that will take into account not only the timestamp
(assuming a LRU policy) but also the performance gain of an instruction in order to select
the best possible subset of instructions for updating.

Therefore, we propose a technique that exploits small structures using a profiling table
that uses a number of entries at the same order of existing structures but with less informa-
tion to determine the impact of each entry on the performance. Knowing the importance of
such entries allows smaller structures to be updated with the best possible subset of entries.

2 Related Work

Prior work mainly proposes replacement policies that decide which entry in the predictor
table will be replaced or take a decision if an entry will be replaced based on its performance
using event counters [2, 3] or hysteresis counters. Event counters keep track of the perfor-
mance of each entry based on different events like miss or hit. Hysteresis counters provide
delay of the replacement of an entry to avoid premature replacement.

Furthermore, there are various techniques [4, 5] to filter the instructions that update the
predictors. Such filtering reduces the pressure due to replacements and improves the pre-
diction rate. Also confidence history is used in order to avoid replacing entries that deliver
good predictions by other that have poor performance. Still, their method relies on having
relatively big structures to achieve accurate predictions

Using a very small structure of 8 entries for example, it will be very difficult for the
hysteresis counters to work since there will not be enough time to get hits and increase the
counters.

We propose the use of a small predictor with a dynamic profiler. The profiler will have a
number of entries at the same order of existing big structures but the size of the entry will
be much smaller. The profiler will provide the decisions for replacement based on hashed
information.

Also, our approach can achieve the filtering and confidence of unpredictable instructions
by keeping track of the performance of each instruction using the profiler.

3 Profiling based replacement policy

Although the proposed solution can be used for different data structures we will use a sim-
ple Stride Value Predictor [1] as our baseline predictor to demonstrate the idea.

A Stride Value Predictor is accessed by a load instruction during the decode stage using
the PC of the load instruction. If there is a tag match then the processor speculatively updates
the destination register of the instruction and the prediction is checked for correctness on the
writeback stage. If the loaded value matches the prediction then the value predictor is simply
updated with the new value and stride. If the loaded value does not match the prediction
then the predictor is updated and also the pipeline is flushed and instructions are reexecuted
with the correct value. If we have a miss in the value predictor during the decode stage, a
new entry corresponding to the new load instruction will be inserted in the value predictor
on the writeback stage.

Studying the behaviour of load instructions and big value predictors, we discovered that
usually a smaller percentage of those instructions are predictable and even a much smaller



percentage of those instructions needs to be in the predictor at the same time at any given
period of time. Trying to use a very small value predictor, of 8 entries for example, was very
difficult for the techniques mentioned before to work since there was not enough time to
get hits and increase the counters that those policies are based on because of the continuous
updates and replacements of the 8-entry table.

The previous observation raises the need of a cheap way to know the performance of the
instructions trying to update the value predictor without keeping those instructions in the
small 8-entry table that provides the predictions. In order to achieve this, we propose the use
of a dynamic profile table with hashed information in combination with the small 8-entry
fully associative value predictor. The profile table will provide all the information needed to
decide which and when an entry will be inserted in the value predictor.

Figure 1 shows the proposed Profile Table along with its associated 8-entry predictor.
The fields of the profiler are as follow:

• Hash value: Hash value is the last 3 bits of the loaded value plus the sign of the value.

• Hash stride: Hash stride is the last 3-bits plus the sign of the difference between the
old hashed value and the new hashed value.

• Counter: 3-bit counter that indicates the performance of the instruction.

• Context: The context number is a unique number assigned heuristically to all loads
that belong to the same contexts.

In order to detect and assign the context for an instruction we use a ssimple heuristic
algorithm. Initially current context (Ccontext) is set to 1, and all entries of the profiler are
invalid. When adding a new entry to the profiler, we assume that we are in Ccontext=1 as
long as we are adding new entries in the profiler and it is assigned to all subsequent invalid
entries. Now, if a valid entry whose context equal to the current context (Ccontext=1) is
encountered then we assume that we are in the loop corresponding to the current context.
This current context is maintained until a new invalid entry or an entry with a different
context is encountered. At this point we assign a newly generated context number to these
entries.

The use of hashed values along with the counter allows the profiler to approximately
but very accurately calculate how much an instruction will contribute to the performance.
For example, each time a load instruction reaches the writeback stage it tries to update the
profiler. The hashed value plus the hashed stride are compared with the hash of the loaded
value and if they are equal then the counter is updated with the number of stalls that the
load caused. Otherwise, if the hashed information does not match then the counter is decre-
mented by one (counter gets values between 0 and 7). The profiler is always updated with
the new hashed value and hashed stride.

The behaviour of our value predictor during the prediction and recovery phase is iden-
tical to the simple stride value predictor [1] described at the beginning of this section. Our
profiler comes to work only at the writeback stage when the value predictor is updated.
Specifically, (a) if an entry corresponding to the load instruction is already in the value pre-
dictor then the profiler and the predictor are updated and (b) if an entry corresponding to
the load instruction is not in the value predictor then only the profiler is updated and also
decides whether and which entry in the value predictor should be replaced.



8-entry Fully Associative 
Value Predictor

128-entry Direct Mapped 
Profiler

.

.

.

.

.

.

.

.

.

Load Instruction

0x00000f04
PC Value Stalls

30 1

PC Value CntStride

6 1 1

Hashed
Value

Hashed
Stride Cnt

==

If MISS then select the 
entry with the minimum 
counter and compare 

with new entryprofiler index

hash
>

If new entry is great than 
the minimum then 

replace

Context

.

.

.

3

Context

minimum 
counter

Figure 1: A 128-entry direct mapped profile table with an 8-entry fully associative Value
Predictor

Once the profiler is updated a an entry has to be replaced in the value predictor the
following steps are performed:

1. Access the value predictor and find a candidate entry for replacement

(a) If one or more entries in the value predictor do not belong to the current context,
then from those entries, the entry with the minimum counter will be selected (A
low value in the counter indicates that the load cause few stall cycles, thus has
little impact on performance, or is hardly predictable).

(b) Else if all the entries in the value predictor belong to the current context then the
entry with the minimum counter will be selected

2. Compare the counter and context of the candidate entry for replacement with the
counter and context of the new load instruction

(a) If the candidate entry belongs to a different context than the current context then
replace the entry with the new load instruction

(b) Else if the candidate belongs to the current context but has a smaller counter than
the counter of the new load instruction, then replace the entry with the new load
instruction

(c) Else if the candidate entry for replacement belongs to the current context and has
also bigger counter than the new load instruction then do nothing

To sum up, the program properties and regularities that the Profile Table exploit to select
the best subset with low cost are the following:



1. Using the last few bits of values and stride: can approximately predict if a loads was
going to be correctly predicted or mispredicted

2. Using the context: can approximately detect loads within a loop and avoid predictor
pollution caused by loads outside the current loop

3. Using the counters: can profile and remember the stalls caused by that load before, and
avoid polluting the predictor with unpredictable loads.

4. No need of tag match in the profiler: rely on the fact that a big (128 entries) direct
mapped table will avoid conflicts within the same context

4 Conclusions and Future work

In order to compare the performance improvement with previous techniques we still use
the filtering techniques such as updating the value predictor only with load instructions and
only those that caused a stall, for both the baseline and our proposed algorithm. We used a 5
stage pipeline model to collect information on the trace and detect potential removal of stall
cycles in case of a correct prediction with out any timing simulation.

Fig. 2 shows the results using the percentage of stalls successfully removed, correctly
predicted, from all the stalls caused during execution. The line "8 entries" correspond to an
8-entry fully associative value predictor using LRU, the line "128 entries + 3bit" correspond
to an 8-entry fully associative value predictor using LRU plus a 3-bit counter for each en-
try to provide hysteresis during replacement. A hysteris counter is set to maximum vallue
when we have a correct prediction and is decrement on a misprediction. An entry cannot be
replaced if the counter is not zero. Finally the "Selective 128" correspond to an 8-entry value
predictor with the proposed dynamic profiler with 128 entries.

The results indicate that the potential performance improvement is significant when
compared to the LRU policy (17% more stalls removed). Also the results show that the mech-
anism can aproximate the performance of the 128 entries fully associative predictor with just
20% of it’s size.

For future work, an optimal replacement analysis has to be done to show how close we
on the limit. Also experiments under a timing model to show how much we can improve
the performance by removing 17% more stalls because of load instructions.



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

his
tog

ram
_b

it

fB
itA

lStep iti

es
tim

ati
on

pn
trc

h0
1

uc
bq

so
rt

aif
ftr0

1

man
de

ld

idc
trn

01
g7

21
life

_b
it

se
ap

rob
e

pe
rsp

tris
_f3

2

tts
prk

01

aff
ine

tris
_f3

2

tbl
oo

k0
1
fou

rie
r

aii
fft0

1

aff
ine

tris
_fi

x

nin
ten

do
_q

so
rt

rou
tel

oo
ku

pv
2

mes
a_

os
de

mo

rou
tel

oo
ku

p
os

pf

matt
std

g3
fax lud

Con
vE

n2
as

sig
n

bz
2te

st
bm

s

hu
ffm

an
n

se
rvo

tes
t

os
pfv

2

mpe
gc

orr
_b

it

Vite
rbZ

ero
s

tcp
bu

lk
tex

t01

Vite
rbG

et

Vite
rbT

og
gle

Vite
rbO

ne
s
iirf

lt0
1

rot
ate

01

Con
vE

n1

dh
ryl

eg
al_

30
ite

r

dh
ryl

eg
al_

20
ite

r

Con
vE

n3

tcp
mixe

d

blo
wfis

h
vv

42
vit

erb
i

dh
rya

ns
i_n

on
_o

pti
mize

d

dh
rya

ns
i_o

pti
mize

d

dh
rya

ns
i_3

0it
er

dh
rya

ns
i_2

0it
er

gs
m_to

as
t

gs
m_u

nto
as

t c4
maz

e

a2
tim

e0
1

aif
irf0

1

ca
nrd

r01de
s3

ge
om

etr
y_

fix

ip_
pk

tch
ec

kb
1m

ip_
pk

tch
ec

kb
2m

ip_
pk

tch
ec

kb
4m

ip_
pk

tch
ec

kb
51

2k

pe
rsp

tris
_fi

x

pk
tflo

w10
24

pk
tflo

w20
48

pk
tflo

w40
96

pk
tflo

w51
2

pu
wmod

01 rc5

rsp
ee

d0
1

Pe
rc

e 
of

 S
ta

lls
 re

m
ov

ed

8 entries Selective 128 128 entries + 3bit

1.6KB vs 0.33 KB

Figure 2: Results for a 128 and 256 entry profiler table with an 8-entry value predictor


	Introduction
	Related Work
	Profiling based replacement policy
	Conclusions and Future work

