
CMA: Chip Multi-Accelerator
Dominik Auras†�1, Sylvain Girbal†‡, Hugues Berry§, Olivier Temam§‡, Sami Yehia†‡

† Thales Research and Technology, France § INRIA Saclay, France
� RWTH Aachen University, Germany ‡ Member of HiPEAC Network of Excellence

{dominik.auras, sylvain.girbal, sami.yehia}@thalesgroup.com {hugues.berry, olivier.temam}@inria.fr

Abstract—Custom acceleration has been a standard
choice in embedded systems thanks to the power density
and performance efficiency it provides. Parallelism is an-
other orthogonal scalability path that efficiently overcomes
the increasing limitation of frequency scaling in current
general-purpose architectures. In this paper we propose
a multi-accelerator architecture that combines the best of
both worlds, parallelism and custom acceleration, while
addressing the programmability inconvenience of heteroge-
neous multiprocessing systems. A Chip Multi-Accelerator
(CMA) is a regular parallel architecture where each core
is complemented with a custom accelerator to speed up
specific functions. Furthermore, by using techniques to ef-
ficiently merge more than one custom accelerator together,
we are able to cram as many accelerators as needed by the
application or a domain of applications.

We demonstrate our approach on a Software Defined
Radio (SDR) case study. We show that starting from
a baseline description of several SDR waveforms and
candidate tasks for acceleration, we are able to map the
different waveforms on the heterogeneous multi-accelerator
architecture while keeping a logical view of a regular
multi-core architecture, thus simplifying the mapping of
the waveforms onto the multi-accelerator.

I. INTRODUCTION

Chip-Multiprocessors (CMP) architectures have be-
come the industry standard of processor architectures
during the last decade [1], [2]; even in the embedded
industry [3]. Technology scaling, the increasing design
complexity of single-core architectures and power re-
quirements have led the industry to naturally adopt this
path. Still, many-core architectures may not scale on the
longer term because the communication overhead, the
limited bandwidth, the limited chip power budget and
the effect of Amdahl’s law will be such that increasing
the number of cores will not add to the performance
anymore.

Custom acceleration is another complementary path
to parallelization which can provide power efficient pro-
cessing for specific application tasks and is inexorably
making its way in general purpose computing because
of the efficiency advantage they offer for compute-
intensive tasks such as video processing [4], texture logic

1During internship at Thales Research and Technology

for graphic processing [1] and cryptographic function-
alities [2]. While SoCs embed an increasing number
of accelerators, these chips are notoriously difficult to
program, which will ultimately limit their scalability and
popularity.

gpp

acc
1

gpp

acc
2

gpp

acc
3

gpp

acc
4

gpp

acc
5

gpp

acc
6

gpp

acc
7

gpp

acc
8

gpp

acc
9

gpp

acc
10

gpp

acc
11

gpp

acc
12

gpp

acc
13

gpp

acc
14

gpp

acc
15

gpp

acc
16

Fig. 1. CMA architecture.

In this paper we propose to combine the best of
both worlds (parallelism and acceleration) by leverag-
ing the efficiency of customization together with the
programmability of regular multi-core architectures. A
Chip Multi-accelerator (CMA), or a many-accelerator, is
regular from a user or programming model perspective
and heterogeneous from an architecture perspective for
performance and power efficiency: Figure 1 shows the
general concept of the proposed architecture. The build-
ing block here is a many-core layout in which a custom
accelerator is coupled with a general-purpose processor.
The custom accelerators in the different tiles need not be
identical and each of them can be tailored to a specific
function. The main idea here is that specialization comes
after parallelization from a programming perspective.
So the accelerators coupled with each processor will
accelerate the individual threads of the parallel program.

According to this baseline, a parallel program devel-
oped for a homogeneous multi-core architecture having
the same fixed infrastructure (same memory architecture,
NoC, programming model, etc.) would run transparently
on the CMA architecture, though at the cost of not

taking advantage of the accelerators, thus widening the
application scope of the target architecture. In some
sense, the same way general-purpose processor designers
find it more efficient to trade additional computational
units for cache size, a many-accelerator architecture
trades additional cores for accelerators. In fact, with
the current technology scaling trends, we can foresee
many-accelerators with hundreds of different accelera-
tors where only few of them need to operate at the
same time according to the application needs, thus
saving substantial energy with appropriate power gating
techniques [5].

The nature and specifics of the accelerators on the
CMA depend on the nature of the target applications.
However for such an approach to become mainstream,
accelerators have to be generated in a generic way from
the application to lower the non recurring engineering
(NRE) costs and allow a reasonable time to market.
Loop based accelerators [6], [7], [8], [9] allow to ef-
ficiently execute frequent computational patterns while
having relatively small footprints compared to FPGA
because they only implement specific data paths of
the target computations. Compound circuits [6] offer
the possibility to merge several loop accelerators into
one accelerator with a minimum overhead and loss of
efficiency. Compounding therefore offers a scalable way
of acceleration on the proposed CMA architecture: for
an N-tile CMA, if the target application (or a specific
domain of applications) has M loops to accelerate, and
M>N, we can appropriately merge more than one circuit
in order to fit into the N accelerators’ placeholders of the
CMA architecture.

To illustrate the CMA concept, we use the Software
Defined Radio (SDR) domain of applications as a case
study. Starting from several target waveforms and their
software implementation, we design a many-accelerator
that can efficiently implement the several waveforms on
our regular but heterogeneous architecture. One essential
aspect of the proposed methodology is that the mapping
of the different tasks is done as if the application
is mapped to a homogeneous multicore architecture.
Then, according to the resulting mapping we generate
the appropriate accelerators for those tasks that need
to be accelerated (in this particular case to meet the
real-time requirements of the waveform). Next, thanks
to compound circuits, we are able to fit the several
accelerated tasks on the available tiles of the CMA.
Consequently, for a given ”Tile budget”, acceleration
is done after parallelization and independently from the
underlying parallel programming model.

The main contributions of this paper are the following:

(1) We combine both parallelism and specialization in a
many-accelerator architecture which provides the pro-
grammability of a parallel architecture and efficiency of
a specialized architecture, (2) we use compound circuits
to increase the scope of the CMA architecture in spite
of a limited number of tiles and (3) we illustrate the
benefits of our approach in a Software Defined Radio
case study.

II. A CMA EXAMPLE: SDR
Wireless protocols in embedded systems have particu-

larly stringent requirements in terms of performance and
power consumption. Software Defined Radio (SDR) [10]
is the concept of performing digital signal processing as
software on flexible hardware. SDR enables the imple-
mentation of several wireless protocols at the physical
layer without the need for a hardware-only (ASIC)
implementation for each protocol; and is considered
as the enabling technology for future multi-mode and
cognitive radios [11].

SDR waveforms inherently consist of parallel (con-
current and pipelined) and sequential tasks (stateful
algorithms). In this context, a CMA is a natural solution
where the parallel parts can be accelerated with the
multi-tile structure, and simultaneously, the sequential
parts can be accelerated with the custom circuits within
each tile.

In this section we show how to implement the physical
layer of two wireless protocols: Orthogonal Frequency
Division Multiplex (802.11a [12]) and Wideband Code
Division Multiple Access (WCDMA) [13] on a CMA ar-
chitecture. For each protocol, we consider both transmit-
ter (TX) and receiver (RX) waveforms. We first demon-
strate how to implement a single waveform (802.11a TX)
on a four-tile CMA architecture. Next, we illustrate the
case for two waveforms when more than one accelerator
needs to be architected within one tile. Finally we show
how to implement the four waveforms on a CMA.

A. 802.11a TX implementation on a 4-tile CMA
Figure 2(a) shows a 802.11a TX (Transmitter) wave-

form consisting of 13 pipelined-dependent tasks. Achiev-
ing the required real time throughput is the essential
constraint (in addition to the traditional power budget
constraint of embedded systems) any wireless protocol
implementation has to fulfill in order to function prop-
erly. The required data throughput of the 802.11a TX
waveform is 24Mbps. In order to achieve this throughput,
each stage of the pipelined waveform must process one
OFDM symbol every 4 µs. An OFDM symbol is a finite-
length signal representing the modulated bits within a
fixed-time slot (4 µs).

2

packet source
process packet
plcp header
data mux

SCR

interleaver
mapper

FEC

preamble field
data sink

FIR

gi norm

IFFT

dpcch src
spreader1
scrambler1
data src
turbo encoder
1st interleaver
ratematching
2nd interleaver

FIR3

adder1

FIR1

slot assembly
spreader0
scrambler0

FIR0
FIR2

adder0
dac sink

–

pkt source
process pkt
plcp header
data mux

SCR

dpcch src
spreader1
scrambler1
data src
. . .

FIR3
interleaver
mapper

FEC

adder1

FIR1

preamble field
data sink

FIR

slot assembly
spreader0
scrambler0

FIR0
FIR2

gi norm

IFFT

adder0
dac sink

(a)

(c)

(b)

(d)

(e)

Fig. 2. 802.11a tx waveform (a) and mapping (b), WCDMA tx waveform (c) and mapping (d), and final mapping of both transmitters (e).

On an embedded PowerPC405 running at 650 Mhz,
the FEC(Forward Error Correction), FFT and FIR tasks
process an OFDM symbol in 6, 19.6 and 61 µs re-
spectively and therefore do not meet the real time
requirements.

Those three tasks (shaded in Figure 2(a)) can be
accelerated using custom hardware to fulfill the real time
and power requirements of the system. Accelerators can
be designed by hand or generated automatically from C
code using tools such as ROCCC [14], CatapultC [15] or
GAUT [16]. In this work we used the tool chain proposed
by Yehia et al. in [6] to generate the circuits for each
individual task.

The circuits are converted from C to an intermediate
representation, and then into Verilog. Critical parts of
the circuits were also handcrafted where C language
was not expressive enough, e.g., counting the number
of ones in a register. In the translation process, array
references are converted into stream buffers, and the
task is thus converted into a data flow circuit. A major
asset of our conversion process is to create a circuit that
will efficiently manage data transfers to/from memory or
other accelerators, thanks to these streams. These stream
buffers come in two sorts: with an address generation
unit and counters to automatically fetch strided refer-
ences, or with an address queue for irregular addresses
generated by the rest of the circuit (e.g., indirect ad-
dressing). The intermediate representation explicits not

only the data flow part of the circuit but also the circuit
control. See Figure 3(a) for the circuit representation of
802.11a FFT task.

The task mapping process is iterative. Tasks are first
partitioned and mapped to the cores of the CMA as if
it were a homogeneous multi-core. The bottleneck tasks
are then selected for acceleration, and the corresponding
accelerators are generated and placed within a tile,
resulting in a mix of software and accelerated tasks. The
process is repeated until real time constraints are met.
The goal is to minimize the number of accelerators. If
the number of necessary accelerators exceeds the number
of tiles, accelerators are merged using the compounding
process explained in Section II-B.

The task mapping can be done by hand or using
automatic parallel mapping tools such as SCOTCH[17]
or METIS[18] assuming a homogeneous CMP but in-
corporating profiling information after acceleration of
critical tasks. Figure 2(b) shows the mapping of each task
to each of the 4 tiles of the CMA using SCOTCH [17]
mapping tools. From a programming perspective, each
call to one of these tasks is replaced with a call to the
corresponding accelerator as in an ASIP architecture [7].

In this example, the profile after acceleration showed
that the resulting mapping could not meet throughput
requirements because of many software tasks mapped
to Tile 0. We therefore accelerated task SCR on Tile 0
(given the profile information) to meet the real time

3

requirements.

B. Mapping several accelerators to one tile using com-
pound circuits

Let us now assume we want to implement a WCDMA
TX waveform, as shown in Figure 2(c), on the same
CMA architecture. In Figure 2(d), we show a possible
mapping of the waveform on the 4-tile CMA architecture
where the 4 tasks FIR0, FIR1, FIR2 and FIR3 are
identical FIR filters mapped to three of the 4 accelerators
of the CMA (in this mapping, FIR0 and FIR2 tasks
execute sequentially on one tile).

In order for the 4-tile CMA to support both waveforms
(802.11a TX and WCDMA TX), tiles need to contain
more than one accelerator. For instance, task SCR of
802.11a TX and task FIR of WCDMA TX are both
mapped to Tile 0 of the CMA. One solution is to
map both accelerators within the tile, and to activate
either one when needed; the processor interface would
also have to support both accelerators. However, due
to chip area constraints, this solution only enables the
implementation of a limited number of accelerators.

An attractive alternative is to aggregate the circuits
of several accelerators into a single circuit. While the
802.11a and WCDMA circuits are different, they often
contain many similar data flow constructs, e.g., the FIR
filter. Instead of implementing such common constructs
twice, once in each accelerator, with one being useless
in the idle accelerator, while the other one is used in
the active accelerator, we create an aggregate accelerator
which factors in these common constructs. Consider, for
example, aggregating FFT (in 802.11a TX waveform)
in Figure 3(a) and the Backward State Metric Unit
(BSMU in WCDMA RX Waveform) in Figure 3(b) into
one accelerator. The input data streams, the adder, the
substracter, the output data stream as well as the register
file of the FFT are all used by the BSMU as well,
and thus can be factored in. The BSMU only requires
a few additional operators (MAX, delay, adder and
substracters) so the aggregate circuit is complemented
accordingly, as shown in Figure 3(c). While manually
aggregating accelerators would be tedious, Yehia et al.
have shown that it is possible to entirely automate the
process [6]: the data flow and control flow graphs of
target accelerators are compared using efficient pattern
matching techniques, and all redundant elements are
discarded. The resulting aggregate circuits are called
compound circuits, and require much less area than the
sum of the areas of the aggregated accelerators. As
part of the aggregation process, some multiplexers are
introduced to enable the compound circuit to behave as
either one of the original accelerators, see Circuit Select

in Figure 3(c). While these multiplexers induce some
area and latency overhead, Yehia et al. [6] have shown
that this overhead remains low, even when 9 accelerators
are aggregated together. As a result, this aggregation
technique significantly increases the scalability of the
CMA by allowing to tackle many more tasks than if
accelerators are simply added up.

Figure 2(e) shows the result of mapping both wave-
forms, 802.11a TX and WCDMA TX to a 4-tile CMA
according to the mappings of Figures 2(b) and 2(d).
In this example, implementing both waveforms on a 4-
tile CMA results in three compounds. The lower right
tile has only one accelerator (IFFT) belonging to the
802.11a TX waveform because no accelerated task from
the WCDMA TX is mapped to that tile.

Implementing remaining waveforms of 802.11a and
WCDMA. Table I shows the final mapping of the four
waveforms, 802.11a TX, 802.11a RX (only decoding
state), WCDMA TX and WCDMA RX. The waveform
802.11a RX has two software tasks (implemented on
the GPP) and 8 accelerated tasks. The Equalizer and
Detector circuit (Equ. & Detct.) is a division-free equal-
izer implementation, delivering the detected data as soft
bits [19]. The interpolator circuit used by 802.11a RX
for synchronization on the transmitter’s clock is a cubic
8-tap interpolator with a Farrow structure [20].

We implemented the decoding state of WCDMA
RX in 45 software tasks and 10 Hardware tasks. The
accelerated tasks Backward State Metric and Forward
State Metric are part of the Max-log-MAP decoders
inside the Turbo Decoder, computing the backward and
forward recursion of the MAP algorithm [21], where the
Fwd. State Metric simultaneously computes the forward
recursion and the extrinsic Log-Likelihood Ratios (LLR).
WCDMA RX’s correlator is used in the searcher that
synchronizes the receiver to the three base stations [22].

Table I shows the area in thousands of gate equivalents
(kGE), latency, power consumption and the speedup of
the hardware tasks and their mapping on the four tiles.
The simulation and synthesis infrastructures are detailed
in Section IV.

The 6 hardware tasks of Tile 0 result in a compound
circuit of 347 kGE (0.98mm2) using a 90nm TSMC
standard cell library for a power consumption of 207
mw. The sum of the area of the 6 individual tasks of
Tile 0 is 687 kGE (1.94mm2), which is twice the size
of the compound circuit.

III. IMPLEMENTATION

Our general work flow is depicted in Figure 4. Starting
from the description of each target waveform represented
by a task flow graph as shown in Figure 2(a) and 2(c), we

4

��������
��	�

����
����

 �

�

���	���� ������

���

���

(a)

��
��

�

� �

���	

� �

��

�

��

(b)

��������
��	�

����
����

��	���� ������

���

���

����

�

� �

���

�
�

�

�
�
�

�

�������
��	���

(c)

Fig. 3. Compound circuits: (a) FFT circuit, (b) Backward State Metric Unit, (c) resulting Compound

!"#"$%"&'()*#"+

,-./01

!"#$%& !"#$%'

!()* +,$(-(./ 012$, 34$$564 !()* +,$(-(./ 012$, 34$$564

7*89: 7;<: 7*89: 7;<:

=&>/''(%!? 3@,(;A#$, 12314 2355 6378 >/BC >>/>& B/&B ''/D& >E/>E

%

=&>/''(%F? GHF%I"#.$, >J'/=& B/JC ='/ED =>/JD HK.$,41#(.1, >&E/&= D/&D =>/'L 'D/EC

<MNO+%!? P4)/%GHF%I"#.$, >=C/>' B/>C ==/B& >J/'J P4)/%GHF%I"#.$, >=C/>' B/>C ==/B& >J/'J

<MNO+%F? >'/EB B/&> 'D/EL ''/&> >'/EB B/&> 'D/EL ''/&>

DD/>E B/CD >B/EB B/>B DD/>E B/CD >B/EB B/>B

G25%3.(.$%O$.,"@ L'/L= D/BB BL/DJ =/JL G25%3.(.$%O$.,"@ L'/L= D/BB BL/DJ =/JL

!"#$%> !"#$%B

!()* +,$(-(./ 012$, 34$$564 !()* +,$(-(./ 012$, 34$$564

7*89: 7;<: 7*89: 7;<:

=&>/''(%!? P4)/%GHF%I"#.$, BLB/CJ D/'L '>E/EB >D/B> GG! 'L'/>L J/L> EB/=> ''/CE

=&>/''(%F? BDE/>' B/'C 'LD/BJ >D'/J> O"Q$, '&>/&= B/&B J>/'J J&/D'

3@,(;A#$, 12314 2355 6378 >/BC GG! 'L'/>L J/L> EB/=> ''/CE

'J/J& >/E= '>/>C >/C& C'/>J =/JJ >=/D= D/D=

<MNO+%!? P4)/%GHF%I"#.$, >=C/>' B/>C ==/B& >J/'J R

<MNO+%F? >'/EB B/&> 'D/EL ''/&> GHF%I"#.$, >J'/=& B/JC ='/ED B&D/>'

DD/>E B/CD >B/EB B/>B

G25%3.(.$%O$.,"@ L'/L= D/BB BL/DJ =/JL

7K): 7K):

G25/%9,,/%M1,,/

M1,,$#(.1, M1,,$#(.1,

S25%3.(.$%O$.,"@ S25%3.(.$%O$.,"@

7K): 7K):

T".$,A"%N$@15$,

N$"K.$,#$(U$, 9V6%W%N$.@./

M1,,$#(.1,

S25%3.(.$%O$.,"@

TABLE I
Accelerator mapping of 802.11a TX, 802.11a RX, WCDMA TX and

WCDMA RX on the CMA

���

�����	
 ������

�
�
������

���	
� ����������

����	��������

���

���

���

�������

���

�
�
������

���

���

���

�
�
������

������
�
�
������

�������

�����	

Fig. 4. CMA work flow.

profile each of the waveform to identify tasks that need
to be accelerated. We then generate the corresponding
custom circuits for those tasks and repeat the profiling
(using simulation). At the end of the iterative process,
we (1) generate the appropriate compound circuits for
each tile, and (2) generate the target code for each
waveform including calls to accelerators and inter-tile

communications.

A. Architecture of the CMA

GPP

MMU

D$1I$1 DMA

Tile Network

NI

ACC

MI

NOC router

N S E W

MEM

Fig. 5. CMA tile.

The CMA is a multi-tile, distributed memory architec-
ture on a mesh toplogy NoC, see Figure 1. The choice
of the memory architecture and the NoC architecture is
orthogonal to the scope of this paper.

Figure 5 shows the details of a single tile of the
mesh. As previously explained in Section I, each tile
is essentially composed of a general purpose processor
(GPP) coupled with a custom accelerator (ACC) and a
local memory (MEM). In this configuration, each pro-
cessing unit (GPP or ACC) only accesses its own local
memory to perform computations and explicit data trans-
fers between tiles are performed by the DMA controller.
The DMA is programmed by the GPP through memory-
mapped registers and the Memory Management Unit
(MMU) is responsible for mapping memory accesses
either to the cache units or the DMA registers.

The Memory Interface (MI) [23] is responsible for
supplying the custom accelerator with the necessary
data. The MI is specially designed for multi-stream
accelerators. It combines the determinism of DMAs,

5

while retaining several of the performance advantages
of general-purpose processors memory systems. The
MI can accommodate multiple concurrent requests, out
of order requests, and it can take advantage of reuse
across concurrent streams, significantly improving the
observed bandwidth. It is composed of streams capable
of fetching complex memory patterns (non-monotonic
references, sparse accesses, etc), and a small Stream
Table to manage concurrent accesses and to enable short-
distance temporal reuse [23].

Finally, each tile is interfaced to the NOC router
through a Network interface (NI) and all communica-
tions between tiles are done through the DMA. We used
wormhole routing for communications over the mesh
topology.

We used a 650Mhz PowerPC405 architecture for the
GPP with a 4-way associative 32KB instruction cache
and a 4-way associative 32KB data cache. We augmented
the PowerPC ISA with instructions to call and configure
the accelerator [6]. In our implementation, we used a
regular SDRAM memory for local memories.

B. Programming the CMA

tile #0
int tile0 main(void)
uint8 t in0[SIZE IN]; //scrambler input
uint8 t out0[SIZE scrambler out]; //first scrambler output
uint8 t out1[SIZE scrambler out]; //second scrambler output
int32 t fir out[SIZE fir]; //fir accelerator output

for(;;)
// ... in0 = output from spreader1
scrambler(0,in0,out0,out1);
// send first scrambler output to tile #2
dma put(TILE2,DMA ID scrambler out,out0,SIZE scrambler out);

// start the fir accelerator on 2nd scrambler output
accel init(ID txfir); //select fir circuit
accel mta(out1,in stream0); //init of input stream
accel mta(fir out,out stream0); //init of output stream
accel start(); //start circuit
// send fir accelerator output to tile #1
dma put(TILE1,DMA ID fir out,fir out,SIZE fir);
// ...

tile #1
int tile1 main(void)
int32 t fir out[2][SIZE fir]; // fir double buffer
int fir buffer idx=0; // current fir double buffer index

// configure dma and double buffer to process tile#0 output
dma config(TILE0,DMA ID fir out,SIZE fir,fir out[0],fir out[1]);

for(;;)
// get fir accelerator output from tile #0
dma get(TILE0,DMA ID fir out,fir out[fir buffer idx],SIZE fir);
adder1(fir out[fir buffer idx],adder out);
// ...
fir buffer idx = 1 - fir buffer idx;

Fig. 6. Programming example of CMA.

The CMA concept is orthogonal to the programming
model. In this study, we used a distributed-memory
model; the task mapping and data transfers are detailed
below.

The application task flow is distributed among the
tiles as tile binaries. Figure 6 shows a partial view of
the WCDMA TX waveform code. The code implements
the three tasks scrambler, FIR3 and adder1. In
Tile 0, the scrambler task is a software task with 2
outputs, out0 and out1. The output of task out1

is passed to the FIR accelerator of the same tile. This
accelerator sends its output fir_out to Tile 1 for
the task adder1.

To invoke the FIR accelerator, we call the
accel_init() function to configure the compound
circuit so that it executes the desired task. Function
accel_mta (move to accelerator) initializes the dif-
ferent registers and streams of the accelerator (in the
example, the input and output streams of the accelerator
are initialized with the addresses of the input and output
buffers of the task).

To transfer data from one tile to another, a pair of
dma_put/dma_get functions is used. On the sender
side, we specify in the dma_put function the des-
tination tile, data source, size as well as a unique
ID (DMA_ID_fir_out) that defines the communica-
tion channel. This ID is useful when more than one
dma_put call from the same tile target another tile.

On the receiver side, we use a double buffer-
ing scheme to allow parallel reception and process-
ing of data. In the example, we use two identical
buffers (initialized in dma_config, fir_out[0] and
fir_out[1]), and alternate between receiving data in
one while processing data of the other (See Figure 6).

IV. PERFORMANCE EVALUATION

Simulation infrastructure. In order to evaluate the
CMA architecture, we built a cycle accurate, distributed
memory multi-core simulator using the UNISIM [24]
infrastructure environment. For the GPP architecture of
the tiles, we consider a regular 90nm PowerPC405 [25]
architecture running at 650 MHz. We assume 3-cycle
(˜4.6ns) latency circuits for simulation, this assumption
is somehow pessimistic because circuits can be further
pipelined [26]. The processor interface, the tile details
and the NoC infrastructure are described in Section
III-A.

Synthesis infrastructure. We developed a tool chain
which automatically creates compound circuits and gen-
erates Verilog HDL based on our intermediate cir-
cuit representation. We then synthesized all circuits
using Synopsys Design Compiler [27] and TSMC
90nm standard library, with the highest mapping ef-
fort of the design compiler (-map_effort high
-area_effort high options). Dynamic power con-
sumption is calculated assuming 50% switching activity.

As mentioned in Section II-A the main goal of an
SDR implementation is to achieve the required real-time
throughput at the physical layer. We evaluate 802.11a
and WCDMA waveforms on three different configura-
tions of a CMA in addition to a baseline configuration
(1x1) which consists of one tile. The three configurations

6

 0

 5

 10

 15

 20

 25

 30

 35

1x1 2x1 2x2 4x2

T
h
ro

u
g
h
p
u
t
(M

b
p
s)

Mesh configuration

noacc
acc

required

(a) 802.11a TX

 0

 5

 10

 15

 20

 25

 30

 35

1x1 2x1 2x2 4x2

T
h
ro

u
g
h
p
u
t
(M

b
p
s)

Mesh configuration

noacc
acc

required

(b) 802.11a RX

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

1x1 2x1 2x2 4x2

T
h
ro

u
g
h
p
u
t
(K

b
p
s)

Mesh configuration

noacc
acc

required

(c) WCDMA TX

Fig. 7. CMA Performance: (a) 802.11a TX, (b) 802.11a RX, (c) WCDMA TX

tested are a dual-tile configuration (2x1), a 4-tile config-
uration (2x2) and an 8-tile configuration (4x2). For each
configuration, we simulate the architecture, with (acc)
and without (noacc) accelerator.

Figure 7 shows the resulting throughput for the three
waveforms. In all cases, running the different tasks of
the waveforms without acceleration leads to through-
puts far from the required real-time throughput (on a
2x2 CMA, 1.5 Mbps TX, 0.155Mbps RX in 802.11a
for a required throughput of 24Mbps, and 31Kbps in
WCDMA TX for a minimum of 128Kbps required);
and adding more cores to map more tasks contributes
little to the performance, as shown in Figure 7. This
is mainly because the SDR consists of pipelined tasks
and the throughput is bounded by the task of lowest
throughput. For example, the throughput of the software
FIR task in 802.11a TX is 1.57 Mbps and the throughput
of a sequential software implementation of the viterbi
decoder is 0.27Mbps. These tasks bound the overall
pipeline throughput.

More importantly, Figure 7 shows that both paral-
lelism and acceleration must be combined to achieve
performance scalability. On the 1x1 configuration (no
parallelism), speedups due to acceleration vary from 10x
(WCDMA TX) up to 68x on the 802.11a RX waveform.
Further scaling is then achieved with task parallelism.
Waveform 802.11a RX, for example, scales well: using
(acc,1x1) configuration as a baseline, the speedups
are respectively 1.8, 2.2 and 4.1 on the 2x1, 2x2
and 4x2 configurations, achieving the required real-time
throughput on the 4x2 configuration. On the WCDMA
TX waveform, we achieve the required throughput on
a smaller configuration (2x2), however the benefit of
parallelism decreases on the 4x2 configuration due to
communications overhead.

V. RELATED WORK

The CMA differs from MPSoC architectures [28]
especially on the programming approach: the regular

template allows to use any of the existing programming
models designed for homogeneous multi-cores, while
programming for MPSoC is notoriously difficult [29].
In the context of SDR, it also allows to use existing
waveform development environments such as [30].

Several approaches [31], [32], [33] previously pro-
posed specialized architectures for SDR. Lin et al. [31]
proposed a parallel architecture, SODA, consisting of
very wide programmable SIMD processors. They later
proposed in [32] to add a dedicated hardware turbo
decoding unit to increase the computational and energy
efficiency of the architecture. Our approach generalizes
the customization process by generating the necessary
custom units “on-demand” for performance- and energy-
intensive tasks. Compounding provides the necessary
flexibility to implement several wireless protocols.

Finally, loop based accelerators [7], [8], [9] are alter-
natives to the compound accelerator as proposed in this
study.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed the CMA, an architecture which
provides both the regular template, and thus ease of
programming, of homogeneous multi-cores, and the ef-
ficiency of custom acceleration. Combined with circuit
(accelerator) compounding, which enables to merge mul-
tiple circuits into one with little overhead, a CMA can
either tackle complex tasks with few tiles and thus at
a cheap cost, or it can become a flexible architecture
capable of tackling a broad range of applications.

For now, tasks are mapped statically to tiles. By
combining a run-time system with accelerators replicated
across multiple tiles (at almost no cost thanks to com-
pounding), we will be able to implement dynamic task
mapping and thereby minimize the number of required
tiles.

ACKNOWLEDGEMENTS

We would like to thank the anonymous referees for
their insightful feedback on this work. We would also

7

like to thank Prof. Rainer Leupers, RWTH Aachen
University, and the HiPEAC Network of Excellence for
their support.

REFERENCES

[1] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa,
E. Grochowski, T. Juan, and P. Hanrahan, “Larrabee: a many-
core x86 architecture for visual computing,” ACM Trans. Graph.,
vol. 27, no. 3, pp. 1–15, 2008.

[2] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way
multithreaded sparc processor,” IEEE micro, vol. 25, no. 2, pp.
21–29, 2005.

[3] K. Hirata and J. Goodacre, “ARM MPCore; the streamlined and
scalable ARM11 processor core,” in ASP-DAC ’07: Proceedings
of the 2007 Asia and South Pacific Design Automation Confer-
ence. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 747–748.

[4] Y.-K. Lin, D.-W. Li, C.-C. Lin, T.-Y. Kuo, S.-J. Wu, W.-C.
Tai, W.-C. Chang, and T.-S. Chang, “A 242mw, 10mm21080p
h.264/avc high profile encoder chip,” in DAC ’08: Proceedings
of the 45th annual Design Automation Conference. New York,
NY, USA: ACM, 2008, pp. 78–83.

[5] K. Chakraborty, P. M. Wells, and G. S. Sohi, “Over-provisioned
multicore processor,” Milwaukee, WI, US, September 2009,
patent application, 11/867508.

[6] S. Yehia, S. Girbal, H. Berry, and O. Temam, “Reconciling
specialization and flexibility through compound circuits,” in
15th International Conference on High-Performance Computer
Architecture (HPCA-15 2009), 14-18 February 2009, Raleigh,
North Carolina, USA. IEEE Computer Society, 2009, pp. 277–
288.

[7] “Tensilica,” http://www.tensilica.com/.
[8] N. Clark, A. Hormati, and S. Mahlke, “Veal: Virtualized ex-

ecution accelerator for loops,” in ISCA ’08: Proceedings of
the 35th International Symposium on Computer Architecture.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 389–
400.

[9] K. Fan, M. Kudlur, G. S. Dasika, and S. A. Mahlke, “Bridging
the computation gap between programmable processors and hard-
wired accelerators,” in 15th International Conference on High-
Performance Computer Architecture (HPCA-15 2009), 14-18
February 2009, Raleigh, North Carolina, USA. IEEE Computer
Society, 2009, pp. 313–322.

[10] W. Tuttlebee, “Software-defined radio: facets of a developing
technology,” Personal Communications, IEEE, vol. 6, no. 2, pp.
38 –44, apr 1999.

[11] “Joint Tactical Radio System,” http://jpeojtrs.mil.
[12] IEEE, Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications (ANSI/IEEE Std 802.11, 1999 Edi-
tion (R2003)), Institute of Electrical and Electronics Engineers,
Inc., Jun. 2003.

[13] H. Holma, A. Toskala et al., WCDMA for UMTS: Radio access
for third generation mobile communications. Citeseer, 2000.

[14] Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers, “Optimized
generation of data-path from c codes for FPGAs,” in DATE ’05:
Proceedings of the conference on Design, Automation and Test in
Europe. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 112–117.

[15] “Designing high-performance DSP hardware using Catapult C
synthesis and the altera accelerated libraries,” Mentor Graphics
Technical Library, Berlin, Germany, October 2007.

[16] O. Sentieys, J. Diguet, and J. Philippe, “GAUT: a high level syn-
thesis tool dedicated to real time signal processing application,”
EURO-DAC, September, 2000.

[17] F. Pellegrini and J. Roman, “Scotch: A software package for
static mapping by dual recursive bipartitioning of process and

architecture graphs,” Lecture Notes in Computer Science, vol.
1067, pp. 493–498, 1996.

[18] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on
Scientific Computing, vol. 20, no. 1, p. 359, 1999.

[19] S. Fechtel and A. Blaickner, “Efficient FFT and equalizer imple-
mentation for OFDM receivers,” IEEE Transactions on Consumer
Electronics, vol. 45, no. 4, pp. 1104–1107, 1999.

[20] H. Meyr, M. Moeneclaey, and S. Fechtel, Digital communication
receivers: synchronization, channel estimation, and signal pro-
cessing. John Wiley & Sons, Inc. New York, NY, USA, 1997.

[21] M. Valenti and J. Sun, “The UMTS turbo code and an efficient
decoder implementation suitable for software-defined radios,”
International journal of wireless information networks, vol. 8,
no. 4, pp. 203–215, 2001.

[22] H. Lee, Y. Lin, Y. Harel, M. Woh, S. Mahlke, T. Mudge, and
K. Flautner, “Software Defined Radio–A High Performance Em-
bedded Challenge,” High Performance Embedded Architectures
and Compilers, pp. 6–26, 2005.

[23] S. Girbal, S. Yehia, H. Berry, and O. Temam, “Stream and
memory hierarchy design for multi-purpose accelerators,” in
SAW-1: 1st Workshop on SoC Architecture, Accelerators and
Workloads (SAW-1), in conjunction with HPCA-16, 2010.

[24] D. August, J. Chang, S. Girbal, D. Gracia-Perez, G. Mouchard,
D. A. Penry, O. Temam, and N. Vachharajani, “UNISIM: An
open simulation environment and library for complex architecture
design and collaborative development,” IEEE Comput. Archit.
Lett., vol. 6, no. 2, pp. 45–48, 2007.

[25] IBM, “PowerPC 405 CPU Core,” Sep. 2006.
[26] L. Pozzi and P. Ienne, “Exploiting pipelining to relax register-

file port constraints of instruction-set extensions,” in CASES ’05:
Proceedings of the 2005 international conference on Compilers,
architectures and synthesis for embedded systems. New York,
NY, USA: ACM, 2005, pp. 2–10.

[27] “Synopsys design compiler,” http://www.synopsys.com.
[28] W. Wolf, A. Jerraya, and G. Martin, “Multiprocessor system-on-

chip (mpsoc) technology,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 27, no. 10, pp.
1701 –1713, oct. 2008.

[29] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and
G. Essink, “Design and programming of embedded multipro-
cessors: an interface-centric approach,” in CODES+ISSS ’04:
Proceedings of the 2nd IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis. New
York, NY, USA: ACM, 2004, pp. 206–217.

[30] V. Ramakrishnan, E. M. Witte, T. Kempf, D. Kammler, G. As-
cheid, H. Meyr, M. Adrat, and M. Antweiler, “Efficient and
portable sdr waveform development: The nucleus concept,”
CoRR, vol. abs/0906.3313, 2009.

[31] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,
C. Chakrabarti, and K. Flautner, “SODA: A low-power archi-
tecture for software radio,” in ISCA ’06: Proceedings of the
33rd annual international symposium on Computer Architecture.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 89–
101.

[32] M. Woh, Y. Lin, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti,
R. Bruce, D. Kershaw, A. Reid, M. Wilder, and K. Flaut-
ner, “From SODA to scotch: The evolution of a wireless
baseband processor,” in MICRO ’08: Proceedings of the 2008
41st IEEE/ACM International Symposium on Microarchitecture.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 152–
163.

[33] J. Glossner, D. Iancu, M. Moudgill, G. Nacer, S. Jinturkar,
S. Stanley, and M. Schulte, “The sandbridge sb3011 platform,”
EURASIP J. Embedded Syst., vol. 2007, no. 1, pp. 16–16, 2007.

8

